Method #1: use
None
(or np.newaxis
) to add an extra dimension so that broadcasting will behave:>>> e
array([[ 0., 1.],
[ 2., 4.],
[ 1., 5.]])
>>> e/e.sum(axis=1)[:,None]
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])
Method #2: go transpose-happy:
>>> (e.T/e.sum(axis=1)).T
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])
(You can drop the
axis=
part for conciseness, if you want.)
Method #3: (promoted from Jaime's comment). (only works Numpy 1.7+)
Use the
keepdims
argument on sum
to preserve the dimension:>>> e/e.sum(axis=1, keepdims=True)
array([[ 0. , 1. ],
[ 0.33333333, 0.66666667],
[ 0.16666667, 0.83333333]])